International Electrotechnical Commission

Acronym: IEC

Address: Rue de Varembé 3, 1211 Geneva 20, Switzerland

Website: https://iec.ch

Stakeholder group: International and regional organisations

Founded in 1906, the International Electrotechnical Commission (IEC) is the world’s leading organisation for the development of international standards for all electrical and electronic technologies. The IEC’s standardisation work is advanced by nearly 20 000 experts from government, industry, commerce, research, academia, and other stakeholder groups.

The IEC is one of three global sister organisations (in addition to the ISO and ITU) that develop international standards.

Digital Activities

The IEC works to ensure that its activities have a global reach in order to meet all the challenges of digital transformation worldwide. The organisation covers an array of digital policy issues illustrated below.

Digital policy issues

Digital standards 

 The IEC carries out standardisation and conformity assessment activities covering a vast array of technologies. These range from smart cities, grids, automation, and energy to electromagnetic compatibility between devices, digital system interfaces and protocols, and fibre optics and cables. Other areas covered by the IEC include multimedia home systems and applications for end-user networks, multimedia e-publishing and e-book technologies, information and communication technologies (ICTs), wearable electronic devices and technologies, cards and personal identification, programming languages, cloud computing and distributed platforms, the Internet of Things, and information technology (IT) for learning, education, and training.

Over the past 30 years, the IEC and ISO Joint Technical Committee (JTC 1) have been developing IT standards for global markets, meeting business and user requirements. This work addresses various aspects including the design and development of IT systems and tools; interoperability, performance, and quality of IT products and systems; harmonised IT vocabulary; and security of IT systems and information. Some of the areas that JTC 1 covers include:

  • Cards and security devices for personal identification
  • Computer graphics, image processing, and environmental data representation
  • Coding of audio, picture, multimedia, and hypermedia information
  • Automatic identification and data capture techniques
  • Data management and interchange
  • IT for learning, education, and training
  • Biometrics
  • Trustworthiness
  • Digital twins
  • Quantum computing
  • 3D printing
  • Augmented reality and virtual reality-based ICT
  • Autonomous and data-rich vehicles
Internet of things 
The Internet of Things (IoT) is one of the main technology sectors covered by the IEC (International Electrotechnical Commission) in its standardisation activities. Several technical committees (some of which are joint groups with the ISO – International Organization for Standardization) focus on various aspects of the Internet of Things. Examples include: standardisation in the area of IoT and related technologies, including sensor networks and wearable technologies; smart cities; smart grid (which involve the use of technology for optimal electricity delivery); and smart energy. In addition to developing standards, the IEC also publishes white papers, roadmaps with recommendations, and other resources on IoT-related issues. IECEE and IECQ, two of the four IEC Systems for Conformity Assessment, verify that digital devices/systems perform as intended.
Artificial intelligence 
Another important technology sector tackled by the IEC is artificial intelligence (AI). Standardisation activities in the area of AI are mostly covered by a joint IEC and ISO technical committee (ISO/IEC JTC 1/SC 42). The committee has recently published a new technical report that aims, among others, to assist the standards community in identifying specific AI standardisation gaps. SC 42 has set up several groups that cover specific aspects of AI, such as computational approaches and characteristics of AI systems, trustworthiness, use cases and applications of AI systems, to name a few.

The IEC also publishes white papers, recommendations and other resources on AI-related topics.

Cloud computing 
 Cloud computing is an enabling technology, based on the principles of shared devices, network access and shared data storage.

ISO/IEC JTC 1/SC 38 has produced international standards with cloud computing terms and definitions and reference architecture. Other work includes a standard which establishes a set of common cloud service building blocks, including terms and offerings, that can be used to create service level agreements (SLAs), which also covers the requirements for the security and privacy aspects of cloud service level agreements.

SC 38 has produced a standard for data taxonomy, which identifies the categories of data that flow across the cloud service customer devices and cloud services and how the data should be handled.

Network security 
In the area of cybersecurity, IEC works with ISO in their joint technical committee to develop the ISO/IEC 27000 family of standards. In addition, the IEC operates globally standardized systems for testing and certification (conformity assessment) to ensure that standards are properly applied in real-world technical systems and that results from anywhere in the world can be compared. To this end, IECQ (IEC Quality Assessment System For Electronic Component) provides an approved process scheme for ISO/IEC 27001. The IECEE (IEC System of Conformity Assessment Schemes for Electrotechnical Equipment and Components) Industrial Cybersecurity Programme focuses on cybersecurity in the industrial automation sector.
Critical infrastructure 
The IEC develops horizontal standards, such as the IEC 62443, for operational technology in industrial and critical infrastructure that includes power utilities, water management systems, healthcare and transport systems. These standards are technology independent and can be applied across many technical areas. On the other hand, several technical committees and subcommittees develop international standards to protect specific domains and critical infrastructure assets (vertical standards).

 

Sustainable development 
 The IEC international standards and conformity assessment systems contribute to the realisation of all 17 Sustainable Development Goals (SDGs). They provide the foundation allowing all countries and industries to adopt or build sustainable technologies, apply best practice, and form the basis for innovation as well as quality and risk management.

 

Capacity development 
The IEC Academy Platform aims to support IEC community members through formal learning and collaboration opportunities. The IEC offers a series of online courses and webinars that provide an in-depth understanding of IEC’s main activities.

Future of meetings

Any reference to online or remote meetings?

  • IEC technical committees have held online/remote meetings for many years, especially for focussed discussions on individual topics. In the context of the COVID-19 pandemic the breadth of technical online meetings has been further expanded to ensure optimal continuation of standardization and conformity assessment activities. Most face-to-face management board and governance meetings have been converted to online meetings during COVID-19. In support of the successful organization of online meetings, the IEC has published a virtual meeting guide.

Any reference to holding meetings outside HQ?

  • Many IEC meetings are held outside of IEC CO headquarters or online or in a hybrid format. The tools for that purpose include webinars, podcasts, online presentations and various teleconferencing facilities. In the future, augmented reality technology or digital twin approaches may also be considered to provide the benefits of face-to-face meetings. While face-to-face meetings have been the rule to date, some IEC Board meetings have also been held virtually to some extent already in the past, with documents being shared in advance on proprietary online platforms and collaboration taking place live online.

Any reference to deliberation or decision making online?

  • In the IEC, nearly all decision-making processes have been taking place virtually since many years, with voting/decisions being dispatched electronically, including collaboration and commenting via a dedicated electronic platform.

International Organization for Standardization

Acronym: ISO

Address: Chem. de Blandonnet 8, 1214 Vernier, Switzerland

Website: https://iso.org

Stakeholder group: International and regional organisations

The International Organization for Standardization (ISO) is a non-governmental international organisation composed of 165 national standard-setting bodies that are either part of governmental institutions or mandated by their respective governments. Each national standard-setting body therefore represents a member state.

After receiving a request from a consumer group or an industry association, ISO convenes an expert group tasked with the creation of a particular standard through a consensus process.

ISO develops international standards across a wide range of industries, including technology, food, and healthcare, in order to ensure that products and services are safe, reliable, of good quality, and ultimately, facilitate international trade. As such, it acts between the public and the private sector.

To date, ISO has published more than 22 000 standards.

Digital Activities

A large number of the international standards and related documents developed by ISO are related to information and communication technologies (ICTs), such as the Open Systems Interconnection (OSI) that was created in 1983 and established a universal reference model for communication protocols. The organisation is also active in the field of emerging technologies including blockchain, the Internet of Things (IoT), and artificial intelligence (AI).

The standards are developed by various technical committees dedicated to specific areas including information security, cybersecurity, privacy protection, AI, and intelligent transport systems.

Digital policy issues

Artificial intelligence 

The joint technical committee of ISO and the International Electrotechnical Commission (IEC) for AI is known as ISO/IEC JTC1/SC 42 Artificial intelligence and is responsible for the development of standards in this area. To date, it has published one standard specifically pertaining to AI with 18 others in development.

ISO/IEC TR 24028 provides an overview of trustworthiness in AI systems, detailing the associated threats and risks associated and addresses approaches on availability, resiliency, reliability, accuracy, safety, security, and privacy.

The standards under development include those that cover: concepts and terminology for AI (ISO/IEC 22989); bias in AI systems and AI-aided decision-making (ISO/IEC TR 24027); AI risk management (ISO/IEC 23894); a framework for AI systems using machine learning (ISO/IEC 23053); and the assessment of machine learning classification performance (ISO/IEC TS 4213).

Up-to-date information on the technical committee (e.g. scope, programme of work, contact details, etc.) can be found on the committee page.

Cloud computing 

ISO and IEC also have a joint committee for standards related to cloud computing which currently has 19 published standards and a further 7 in development.

Of those published, two standards of note include ISO/IEC 19086-1, which provides an overview, foundational concepts, and definitions for a cloud computing service level agreement framework, and ISO/IEC 17789, which specifies the cloud computing reference architecture.

Standards under development include those on health informatics (ISO/TR 21332.2); the audit of cloud services (ISO/IEC 22123-2.2); and data flow, categories, and use (ISO/IEC 19944-1).

Up-to-date information on the technical committee (e.g. scope, programme of work, contact details, etc.) can be found on the committee page.

Internet of things 

Recognising the ongoing developments in the field of IoT, ISO has a number of dedicated standards both published and in development, including those for intelligent transport systems (ISO 19079), future networks for IoT (ISO/IEC TR 29181-9), unique identification for IoT (ISO/IEC 29161), Internet of Media Things (ISO/IEC 23093-3), trustworthiness of IoT (ISO/IEC 30149), and industrial IoT systems (ISO/IEC 30162).

 IoT security is addressed in standards such as ISO/IEC 27001 and ISO/IEC 27002, which provide a common language for governance, risk, and compliance issues related to information security.

 In addition, there are seven standards under development, some of which provide a methodology for the trustworthiness of an IoT system or service (ISO/IEC 30147); a trustworthiness framework (ISO/IEC 30149); the requirements of an IoT data exchange platform for various IoT services (ISO/IEC 30161); and a real-time IoT framework (ISO/IEC 30165).

 Up-to-date information on the ISO and IEC joint technical committee for IoT (e.g. scope, programme of work, contact details, etc.) can be found on the committee page.

Telecommunications infrastructure 

ISO’s standardisation work in the field of telecommunications infrastructure covers areas such as planning and installation of networks (e.g. ISO/IEC 14763-2 and ISO/IEC TR 14763-2-1), corporate telecommunication networks (e.g. ISO/IEC 17343), local and metropolitan area networks (e.g. ISO/IEC/IEEE 8802-A), private integrated telecommunications networks (e.g. ISO/IEC TR 14475), and wireless networks. Next generation networks – packet-based public networks able to provide telecommunications services and make use of multiple quality of service enabled transport technology – are equally covered (e.g. ISO/IEC TR 26905).

ISO also has standards for the so-called future networks, which are intended to provide futuristic capabilities and services beyond the limitations of current networks, including the Internet.

Up-to-date information on the joint ISO and IEC technical committee that develops these standards (e.g. scope, programme of work, contact details, etc.) can be found on the committee page.

Blockchain 

ISO has published three standards on blockchain and distributed ledger technologies: ISO/TR 23455 gives an overview of smart contracts in blockchain and distributed ledger technologies; ISO/TR 23244 tackles privacy and personally identifiable information protection; and ISO 22739 covers fundamental blockchain terminology respectively.

ISO also has a further ten standards on blockchain in development. These include those related to: security risks, threats and vulnerabilities (ISO/TR 23245.2); security management of digital asset custodians (ISO/TR 23576); taxonomy and ontology (ISO/TS 23258); legally-binding smart contracts (ISO/TS 23259); and guidelines for governance (ISO/TS 23635).

Up-to-date information on the technical committee (e.g. scope, programme of work, contact details, etc.) can be found on the committee page.

Emerging technologies 

ISO develops standards in the area of emerging technologies. Perhaps the largest number of standards in this area are those related to robotics. ISO has more than 40 different standards either published or in development that cover issues such as: collaborative robots (e.g. ISO/TS 15066); safety requirements for industrial robots (e.g. ISO 10218-2); and personal care robots (e.g. ISO 13482).

Autonomous or so-called intelligent transport systems (ITS) standards are developed by ISO’s ITS Technical Committee and include those for forward vehicle collision warning systems (ISO 15623) and secure connections between trusted devices (ISO/TS 21185).

Standards are also being developed to address the use of virtual reality in learning, education, and training (e.g. ISO/IEC 23843) and the display device interface for augmented reality (ISO/IEC 23763).

Network security 

Information security and network security is also addressed by ISO and IEC standards. The ISO and IEC 27000 family of standards covers information security management systems and are used by organisations to secure information assets such as financial data, intellectual property, and employee information.

For example, ISO/IEC 27031 and ISO/IEC 27035 are specifically designed to help organisations respond, diffuse, and recover effectively from cyberattacks. ISO/IEC 27701 is an extension to ISO/IEC 27001 and ISO/IEC 27002 for privacy information management, and details requirements and guidance for establishing, implementing, maintaining, and continually improving a Privacy Information Management System (PIMS).

Network security is also addressed by standards on technologies such as the IoT, smart community infrastructures, medical devices, localisation and tracking systems, and future networks.

Up-to-date information on the joint ISO and IEC technical committee (e.g. scope, programme of work, contact details, etc.) can be found on the committee page.

Encryption 

As more and more information (including sensitive personal data) is stored, transmitted, and processed online, the security, integrity, and confidentiality of such information becomes increasingly important. To this end, ISO has a number of standards for the encryption of data. For example, ISO/IEC 18033-1, currently under development, addresses the nature of encryption and describes certain general aspects of its use and properties. Other standards include ISO/IEC 19772 that covers authenticated encryption, ISO/IEC 18033-3 that specifies encryption systems (ciphers) for the purpose of data confidentiality, and ISO 19092 that allows for encryption of biometric data used for authentication of individuals in financial services for confidentiality or other reasons.

ISO also has standards that focus on identity-based ciphers, symmetric and asymmetric encryption, public key infrastructure, and many more related areas.

Data governance 

Big data is another area of ISO standardization, and around 80% of related standards are developed by the ISO/IEC AI committee. The terminology for big data-related standards is outlined in ISO/IEC 20546, while ISO/IEC 20547-3 covers big data reference architecture.

ISO/IEC TR 20547-2 provides examples of big data use cases with application domains and technical considerations and ISO/IEC TR 20547-5 details a roadmap of existing and future standards in this area. A further eight standards are in development and include those for big data security and privacy (ISO/IEC 27045), terminology used in big data within the scope of predictive analytics (ISO 3534-5), and data science life cycle (ISO/TR 23347).

Up-to-date information on the technical committee (e.g. scope, programme of work, contact details, etc.) can be found on the committee page.

Privacy and data protection 

Privacy and data protection in the context of ICTs is another area covered by ISO’s standardisation activities. One example is ISO/IEC 29101 which describes a privacy architecture framework.

Others include those for privacy-enhancing protocols and services for identification cards (ISO/IEC 19286); privacy protection requirements pertaining to learning, education, and training systems employing information technologies (ISO/IEC 29187-1); privacy aspects in the context of intelligent transport systems (ISO/TR 12859); and security and privacy requirements for health informatics (ISO/TS 14441).

Digital identities 

Digital signatures that validate digital identities help to ensure the integrity of data and authenticity of particulars in online transactions. This, therefore, contributes to the security of online applications and services. Standards to support this technology cover elements such as: anonymous digital signatures (e.g. ISO/IEC 20008-1 and ISO/IEC 20008-2); digital signatures for healthcare documents (e.g. ISO 17090-4 and ISO 17090-5); and blind digital signatures, which is where the content of the message to be signed is disguised, used in contexts where, for example, anonymity is required. Examples of such standards are ISO 18370-1 and ISO/IEC 18370-2.

Digital tools

ISO has developed an online browsing platform that provides up to date information on ISO standards, graphical symbols, publications, and terms and definitions.

Future of Meetings

Any reference to online or remote meetings?

Any reference to holding meetings outside HQ?

Any reference to deliberation or decision making online?

  • Yes, ISO governance groups are also meeting virtually.

United Nations Economic Commission for Europe

Acronym: UNECE

Address: Palais des Nations, 8-14 Avenue de la Paix CH-1211, Geneva 10, Switzerland

Website: https://unece.org

Stakeholder group: International and regional organisations

The United Nations Economic Commission for Europe (UNECE) is one of five regional commissions of the UN. Its major aim is to promote pan-European economic integration. To do so, it brings together 56 countries in Europe, North America, and Asia, which discuss and co-operate on economic and sectoral issues.

UNECE works to promote sustainable development and economic growth through policy dialogue, negotiation of international legal instruments, development of regulations and norms, exchange and application of best practices, economic and technical expertise, and technical co-operation for countries with economies in transition. It also sets out norms, standards, and conventions to facilitate international co-operation.

Digital Activities

UNECE’s work touches on several digital policy issues, ranging from digital standards (in particular in relation to electronic data interchange for administration, commerce, and transport) to the Internet of Things (e.g. intelligent transport systems and automated driving). Its UN Centre for Trade Facilitation and Electronic Business (UN/CEFACT) develops trade facilitation recommendations and electronic business standards, covering both commercial and government business processes. UNECE also carries out activities focused on promoting sustainable development, in areas such as sustainable and smart cities for all ages; sustainable mobility and smart connectivity; and measuring and monitoring progress towards the sustainable development goals (SDGs).

UNECE’s work in the field of statistics is also relevant for digital policy issues. For example, the 2019 Guidance on Modernizing Statistical Legislation – which guides countries through the process of reviewing and revising statistical legislation – covers issues such as open data, national and international data exchanges, and government data management.

Digital policy issues

E-commerce and trade 

UNECE’s subsidiary, CEFACT, serves as a focal point (within the UN Economic and Social Council) for trade facilitation recommendations and electronic business standards, covering both commercial and government business processes. In collaboration with the Organization for the Advancement of Structured Information Standardisation (OASIS), UNECE developed the Electronic Business using eXtensible Markup Language (ebXML). Another output of UNECE is represented by the UN rules for Electronic Data Interchange for Administration, Commerce and Transport (UN/EDIFACT), which include internationally agreed upon standards, directories, and guidelines for the electronic interchange of structured data between computerised information systems. UNECE has also issued recommendations on issues such as electronic commerce agreements and e-commerce self-regulatory instruments. CEFACT also works on supporting international, regional, and national e-government efforts to improve trade facilitation and e-commerce systems.

Digital standards 

UNECE’s subsidiary body CEFACT has developed, together with OASIS, the Electronic Business using eXtensible Markup Language (ebXML) standard (containing specifications which enable enterprises around the world to conduct business over the Internet). UNECE’s standardisation work has also resulted in the development of EDIFACT), as well as other digital standards in areas such as agriculture (e.g. electronic crop reports, electronic animal passports, and fishering languages for universal eXchange), e-tendering, and transfer of digital records.

Internet of things 

As part of its work in the field on intelligent transport systems, UNECE carries out several activities in the field of automated driving. It hosts multilateral agreements and conventions ruling the requirements and the use of these technologies (such as the Vienna Convention on Road Traffic). Its activities (e.g. facilitating policy dialogue and developing regulations and norms) are aimed at contributing to enabling automated driving functionalities and to ensuring that the benefits of these technologies can be captured without compromising safety and progress achieved in areas such as border crossing and interoperability. It also collaborates with other interested stakeholders, including the automotive and information and communication technology (ICT) industries, consumer organisations, governments, and international organisations.

Another area of work for UNECE is related to harnessing smart technologies and innovation for sustainable and smart cities. In this regard, it promotes the use of ICTs in city planning and service provision and it has developed (together with the ITU) a set of key performance indicators for smart sustainable cities. UNECE also works to facilitate connectivity through sustainable infrastructure. For instance, it assists countries in developing smart grids for more efficient energy distribution, and it administers international e-roads, e-rail, and e-waterway networks.

Blockchain 

UNECE’s subsidiary body CEFACT has been exploring the use of blockchain for trade facilitation. For instance, work carried out within the Blockchain White Paper Project has resulted in two white papers: One looking at the impact of blockchain on the technical standards work of CEFACT and another looking at how blockchain could facilitate trade and related business processes. The ongoing Chain Project is focused on developing a framework/mechanism for the development and implementation of blockchain services infrastructure, and creating a whitepaper on strategy for development and implementation of interoperable global blockchain technology infrastructure. Another blockchain-related project looks into the development of a standard on the creation of a cross-border inter customs ledger using blockchain technology.

Digital and environment 

UNECE’s work in the area of environmental policy covers a broad range of issues, such as the green economy, shared and safe water, environmental monitoring and assessment, and education for sustainable development. Much of this work is carried out by the Committee on Environmental Policy, which, among other tasks, supports countries in their efforts to strengthen their environmental governance and assesses their efforts to reduce their pollution burden, manage natural resources, and integrate environmental and socioeconomic policies. UNECE has put in place an Environmental Monitoring and Assessment Programme to assist member states in working with environmental data and information and enable informed decision-making processes. As part of this programme, it promotes the use of electronic tools for accessing information and knowledge on environmental matters and is developing a Shared Environmental Information System across the UNECE region. The system is intended to enable countries to connect databases and make environmental data more accessible.

UNECE Environmental Conventions (not necessarily covering digital issues directly, but relevant)

Sustainable development 

UNECE assists countries in its region to address sustainable development challenges (in areas such as environment, connectivity, and urbanisation) through leveraging its norms, standards and conventions, building capacities, and providing policy assistance. It focuses on driving progress towards the following SDGs: 3 (good health and well-being), 6 (clean water and sanitation), 7 (affordable and clean energy), 8 (decent work and economic growth), 9 (industry, innovation and infrastructure), 11 (sustainable cities and communities), 12 (responsible consumption and production), 13 (climate action), and 15 (life on land). SDG 5 (gender equality) and 17 (partnerships) are overarching for all UNECE activities. Activities undertaken by UNECE in relation to these SDGs converge under 4 high-impact areas: sustainable use of natural resources; sustainable and smart cities for all ages; sustainable mobility and smart connectivity; and measuring and monitoring progress towards the SDGs.

UNECE has developed a series of tools and standards to support countries in measuring and monitoring progress towards the SDGs. It has also put in place an Innovation Policy Outlook which assesses the scope, quality, and performance of policies, institutions and instruments promoting innovation for sustainable development.

Data governance 

UNECE carries out multiple activities of relevance for the area of data governance. To start with, its work on trade facilitation also covers data management issues. For example, it has issued a White Paper on a data pipeline concept for improving data quality in the supply chain and a set of Reference Data Model Guidelines. Several projects carried out in the framework of UNECE’s subsidiary CEFACT also cover data-related issues. Examples include the Cross-border Management Reference Data Model Project (aimed to provide a regulatory reference data model within the CEFACT semantic library in order to assist authorities to link this information to the standards of other organisations) and the Accounting and Audit Reference Data Model Project.

Secondly, UNECE has a Statistical Division which coordinates international statistical activities between UNECE countries and helps to strengthen, modernise, and harmonise statistical systems, under the guidance of the Conference of European Statisticians. Its activities in this area are guided by the Fundamental Principles of Official Statistics, adopted in 1992 and later endorsed by the UN Economic and Social Council and the General Assembly. Areas of work include: economic statistics, statistics on population, gender and society, statistics related to sustainable development and the environment, and modernisation of official statistics. In 2019, UNECE published a Guidance on Modernizing Statistical Legislation to guide countries through the process of reviewing and revising statistical legislation. The guidance covers issues such as open data, national and international data exchanges, and government data management.White Paper: Data Pipeline (2018)

Digital tools

UNECE Dashboard of SDG indicators

UNECE digital tools facilitating access to statistical information:

UNECE online platforms and observatories gathering updates and policy resources to help member states respond to the COVID-19 crisis:

Future of meetings

Any reference to online or remote meetings?

  • Yes, UNECE Executive Committee – Special procedures during the COVID-19 pandemic (adopted in April 2020 and extended in July 2020 authorise the Chair of the Commission to convene remote informal meetings of the members of the Executive Committee. It also encourages UNECE subsidiary bodies to explore innovative formats to conduct business remotely. The Executive Committee held a remote informal meeting of members on 20 May 2020. Subsequently, its 110th meeting was also held online, on 10 July 2020.
  • The Conference of European Statisticians held its 68th plenary as a hybrid meeting on 22 June and as an informal virtual meeting on 23–24 June 2020.
  • Several UNECE groups have been holding online meetings. For instance, the 118th session of the Working Party on General Safety Provisions (GRSG) (15–17 July) was held via Webex, without interpretation, and is considered an informal meeting

Any reference to deliberation or decision making online?

  • UNECE Executive Committee – Special procedures during the COVID-19 period (adopted in April 2020 and extended in July 2020) refers to use of the silence procedure for decision-making.
  • Proceedings of the 118th session of GRSG: ‘Decisions taken during the informal virtual meeting will be circulated after the meeting in the three ECE official languages to the delegations of Contracting Parties via their missions in Geneva for final approval under silence procedure of 10 days.’

Graduate Institute of International and Development Studies

Acronym: IHEID

Address: Maison de la paix, Chemin Eugène-Rigot 2A CH-1211 Geneva, Switzerland

Website: https://graduateinstitute.ch

The Graduate Institute of International and Development Studies is an institution of research and higher education at the postgraduate level dedicated to the study of world affairs, with a particular emphasis on the cross-cutting fields of international relations and development issues.

Through its core activities, the Institute aims to promote international co-operation and contribute to the progress of developing societies. More broadly, it endeavours to develop creative thinking on the major challenges of our time, foster global responsibility and advance respect for diversity.

By intensely engaging with international organisations, non-governmental organisations, governments and multinational companies, the Institute participates in global discussions and prepares future policymakers to lead tomorrow’s world.

Digital Activities

As part of its main strategy, the Institute seeks to develop digitally-driven innovation in teaching and research, as well as information technology (IT) services. At the same time, as a research institution focusing on global challenges and their impacts, digitalisation has become one of its fundamental and policy-oriented research areas.

Over the years, the Institute has developed a performing IT infrastructure with secured data storage space and digital platforms (e.g. Campus, Moodle, TurntIn, Zoom, MyHR, Salesforces, Converis, etc.) to provide seamless services as well as dematerialised/paperless processes (e.g. student applications, course registration, etc.) for students, staff, and professors.

Various publications address topics related to digitalisation and its impact, such as big data, robotics, crypto mining, terrorism and social media, data in international trade and trade law, Internet governance, digital health, microfinance and Fintech, smart cities, etc.

The Institute also organises workshops, seminars, film screenings, and other events that cover Internet-related issues, ranging from the digital divide and the governance and regulatory aspects of data to cybersecurity.

Digital policy issue

Capacity development 

The Institute provides a multidisciplinary perspective on international governance, including research and teaching on Internet governance, digital trade, and artificial intelligence (AI).

In terms of teaching, its Master, PhD, and executive education courses are increasingly focused on the effects of digitalisation on society and the economy, and more generally the global system. Some examples of courses are Internet Governance and Economics’, ‘Internet Governance: the Role of International Law, Cybersecurity and Virtual Insecurity’, ‘Artificial Intelligence and the Future of Work’, ‘Technology and Development’, and ‘Big Data Analysis’. Digital skills workshops are also organised for students to provide them with basic digital competence for their future professional or academic life (e.g. big data analysis, digital communication strategy, introduction to programming with Python, data analysis in various contexts, etc.)

In terms of research, a growing number of researchers and PhD candidates analyse the impact of digitalisation on international relations and development issues. A few examples of research topics are Internet and AI governance, digitalisation of trade, fintech, AI and humanitarian law, regulatory aspects of data, digital inclusion, and open government data. Some of the prominent research initiatives are listed under respective digital policy issues sections below.

The Institute also supports professors in developing pedagogical skills and in using digital tools. Workshops are offered to all faculty members at the end of the summer to prepare them for hybrid teaching and the use of new technological tools in the classroom.

Artificial intelligence 

The Institute hosts the new Digital Health and AI Research Collaborative (I-DAIR) directed by former Ambassador of India and Visiting Lecturer at the Institute Amandeep Gill. I-DAIR aims to create a platform to promote responsible and inclusive AI research and digital technology development for health. This platform is supported by the Geneva Science and Diplomacy Anticipator (GESDA).

The faculty also carries out a number of digital policy-related research projects, some of which focus on AI in particular. For example, the project titled ‘Lethal Autonomous Weapon Systems (LAWS) and War Crimes: Who is to Bear Responsibility?’ aims to clarify whether and to what extent the requirements for ascribing criminal responsibility for the commission of an act – and in particular the key concepts of culpability theories – can be applied to the use of LAWS in combat operations. This analysis will serve to identify lacunae and inconsistencies in the current legal framework in the face of the advent of military robotics.

Sustainable development 

A number of projects carried out by the Institute’s members aim to address the relation between digital technologies and sustainable development. For instance, the ‘Modelling Early Risk Indicators to Anticipate Malnutrition’ (MERIAM) project uses computer models to test and scale up cost-effective means to improve the prediction and monitoring of undernutrition in difficult contexts.

The project ‘Governing health futures 2030: growing up in a digital world’, hosted at the Global Health Centre, explores how to ensure that digital development helps improve the health and well-being of all, and especially among children and young people. It focuses on examining integrative policies for digital health, AI, and universal health coverage to support the attainment of the third sustainable development goal.

Focusing on the Global South, the project ‘African Futures: Digital Labor and Blockchain Technology’ strengthens empirical knowledge on changing trends in employment in the region by way of a two-pronged approach to the increasingly interconnected global division of labor: i) App-based work mediated by online service platforms and ii) the use of blockchain technology in mining sites for ethical sourcing, traceability, and proof of origin.

Inclusive finance 

Projects carried out by the Institute’s members also address the role of digital technologies in enhancing financial inclusion. The project ‘Effects of Digital Economy on Banking and Finance’ studies digital innovations and how fintech extends financial services to firms and households and improves credit allocation using loan-account level data comparing the fintech and traditional banking.

Online education 

The Institute has developed digital tools (e.g. app for students, responsive website) and used digital services (e.g. social media, Facebook, Google ads, etc.) for many years in its student recruitment and communication campaigns. Digital tools are also part of the pedagogical methods to improve learning. Flipped classrooms, MOOCs, SPOCs, and podcasts, to name a few, are used by professors in master and PhD programmes, as well as in executive education.

Thanks to the above developments, the Institute was able to respond quickly and effectively to the COVID-19 pandemic in March 2020. In a week, the Institute moved to distance working and online teaching.

Digital tools

  • Digital collections that allow free access to historical documents, texts, and photographs on international relations from the 16th to 20th century;
  • Two free online courses (MOOC) on globalisation and global governance.
  • Podcasts showcasing professors and guests’ expertise (What Matters Today, In Conversation With, Parlons en).
  • Podcasts are also integrated into the curricula of several international history and interdisciplinary master courses to encourage students to use social network platforms to popularise their findings.

Future of Meetings

Any reference to online or remote meetings?

  • Events, sessions, and seminars are held online (usually in Zoom), e.g. information sessions for admitted and prospective students are taking place online.

European Organization for Nuclear Research

Acronym: CERN

Address: Espl. des Particules 1, 1211 Meyrin, Switzerland

Website: https://home.cern/

Stakeholder group: NGOs and associations

CERN is widely recognised as one of the world’s leading laboratories for particle physics. At CERN, physicists and engineers probe the fundamental structure of the universe. To do this, they use the world’s largest and most complex scientific instruments – particle accelerators and detectors – to study the basic constituents of matter and the forces that shape the universe. Technologies developed at CERN go on to have a significant impact through their applications in wider society.

Digital activities

CERN has had an important role in the history of computing and networks. The World Wide Web (WWW) was invented at CERN by Sir Tim Berners-Lee. The web was originally conceived and developed to meet the demand for automated information-sharing between scientists at universities and institutes around the world. Grid computing was also developed at CERN with partners and thanks to funding from the European Commission. The organisation also carries out activities in the areas of cybersecurity, big data, machine learning, artificial intelligence (AI), data preservation, and quantum technology.

Digital policy issues

Cloud computing 

The scale and complexity of data from the Large Hadron Collider (LHC), the world’s largest particle accelerator, is unprecedented. This data needs to be stored, easily retrieved, and analysed by physicists all over the world. This requires massive storage facilities, global networking, immense computing power, and funding. CERN did not initially have the computing or financial resources to crunch all of the data on site, so in 2002 it turned to grid computing to share the burden with computer centres around the world. The Worldwide Large Hadron Collider Computing Grid (WLCG) builds on the ideas of grid technology initially proposed in 1999 by Ian Foster and Carl Kesselman. The WLCG relies on a distributed computing infrastructure, as data from the clashes of protons or heavy ions is distributed via the Internet for processing at data centres worldwide. This approach of using ‘virtual machines’ is based on the same paradigm as cloud computing. It is expected that further CERN developments in the field of data processing will continue to influence digital technologies.

Telecommunications infrastructure 

In the 1970s, CERN developed CERNET, a lab-wide network to access mainframe computers in its data centre. This pioneering network eventually led CERN to become an early European adopter of TCP/IP for use in connecting systems on site. In 1989, CERN opened its first external TCP/IP connections and by 1990, CERN had become the largest Internet site in Europe and was ready to host the first WWW server. Nowadays, in addition to the WLCG and its distributed computing infrastructure, CERN is also the host of the CERN Internet eXchange Point (CIXP), which optimises CERN’s Internet connectivity and is also open to interested Internet Service Providers (ISPs).

Digital standards 

Ever since releasing the World Wide Web software under an open-source model in 1994, CERN has been a pioneer in the open-source field, supporting open-source hardware (with the CERN Open Hardware Licence), open access (with the Sponsoring Consortium for Open Access Publishing in Particle Physics – SCOAP3) and open data (with the CERN Open Data Portal). Several CERN technologies are being developed with open access in mind, such as  Indico, Invenio, Zenodo. Open-source software, such as CERNBox, CTA, EOS, FTS, GeantIV, ROOT , RUCIO, SWAN have been developed to handle, distribute and analyse the huge volumes of data generated by the LHC experiments and are also made available to the wider society.

Data governance 
>

CERN manages vast amounts of data, and not only scientific data, but also data in more common formats such as webpages, images and videos, documents, and more. For instance, the CERN Data Centre processes on average one petabyte (one million gigabytes) of data per day. As such, the organisation notes that it faces the challenge of preserving its digital memory. It also points to the fact that many of the tools that are used to preserve data generated by the LHC and other scientific projects are also suitable for preserving other types of data and are made available to the wider society.

Artificial intelligence 

Through CERN openlab, CERN collaborates with leading ICT companies and research institutes. The R&D projects carried out through CERN openlab are currently addressing topics related to data acquisition, computing platforms, data storage architectures, compute provisioning and management, networks and communication, machine learning and data analytics, and quantum technologies. CERN researchers are using machine learning techniques as part of their efforts to ‘maximise the potential for discovery…and optimise resources usage’. Machine learning is used, for instance, to improve the performance of LHC experiments in areas such as particle detection and managing computing resources. Going one step further, at the intersection of AI and quantum computing, CERN openlab is exploring the feasibility of using quantum algorithms to track the particles produced by collisions in the LHC, and is working on developing quantum algorithms to help optimise how data is distributed for storage in the WLCG.

University of Geneva

Acronym: UNIGE

Address: Rue De-Candolle 5, 1205 Genève, Switzerland

Website: https://unige.ch/

Stakeholder group: Academia & think tanks

The University of Geneva (UNIGE) offers more than 280 types of degrees and more than 250 continuing education programmes covering an extremely wide variety of fields across exact sciences, medicine, and humanities.

Digital activities

The university has incorporated digital technology into its strategy and appointed a vice-rector in charge of defining and piloting digital initiatives in the fields of education, research, and services to society. Its digital strategy focuses on three dimensions of digital technology: digital technology for teaching and research, digital solutions for open and connected science and digital expertise in the service fo society.

It also provides courses focusing on digital law, and it has been very active in research related to applied physics and quantum cryptography.

More information on the university’s digital strategy can be found at the dedicated page.

Digital policy issues

Capacity development 

 In an attempt to develop digital skills of its community, the University of Geneva has put in place a series of measures to meet the needs of its students, researchers, administrative staff, and other community members. To this end, the university offers a series of courses on digital technologies and related issues, participates in a number of projects, and provides training and workshops on particular digital skills and tools. It is also developing and deploying its Open Science roadmap.

Moreover, the university created a Digital Law Center (DLC) at the Faculty of Law over the course of implementing its digital strategy. The DLC provides courses focused on the Internet and law. It also organises its annual Digital Law Summer School, where participants can discuss digital law and policy issues such as cybersecurity, privacy, freedom of expression, and intellectual property with leading experts from academia and international organisations. Every year since 2016, the university has organised the Geneva Digital Law Research Colloquium (which is run by the DLC in co-operation with other leading academic centers, including the Berkman Klein Center for Internet and Society at Harvard University). This event is a scientific workshop that gives an opportunity to selected next generation digital law and policy researchers to present and discuss various digital policy issues such as freedom of expression online, copyright, and the Internet of Things with senior high level experts.

Leveraging its multidisciplinary culture, the university has recently created a transversal Data Science Competence Center aiming at federating competencies from all faculties and enabling cross-fertilisation between various disciplines to develop advanced research and services.

The university has also developed a Digital Innovation Incubation Programme that supports residency periods for its members at swissnex San Francisco to enhance the links with the Bay Area.

The university has created a portal for online and blended learning with a set of resources to help tutors prepare their courses and classes. Some of the resources are intended for self-training, while others provide users with training/coaching opportunities with University of Geneva e-learning and blended learning experts.

Digital tools

The university maintains an IT Service Catalogue where students can access all digital tools the university provides, such as the UNIGE Mobile App, UNIGE Portal, UNIGE’s data storage system, and many others.

The University of Geneva also offers a number of online courses.

 Future of Meetings

Any reference to online or remote meetings?

  • The university plans to extend its Zoom license, which was initially acquired for one semester, until the end of the 2020/2021 academic year. Some exams have taken place online.

Any reference to holding meetings outside HQ?

  • The university is using online platforms for e-conferences and plans to deploy them in order to provide alternatives to in-person meetings.

DiploFoundation

Address: 7bis, Avenue De La Paix, CH-1202 Geneva, Switzerland

Website: https://diplomacy.edu

Stakeholder group: Academia & think tanks

DiploFoundation is a leading global capacity development organisation in the field of Internet governance.

Diplo was established by the governments of Switzerland and Malta with the goal of providing low cost, effective courses and training programmes in contemporary diplomacy and digital affairs, in particular for developing countries. Its main thematic focuses are on Internet governance (IG), e-diplomacy, e-participation, and cybersecurity.

Diplo’s flagship publication ‘An Introduction to Internet governance’ is among the most widely used texts on IG, translated into all the UN languages and several more. Its online and in situ IG courses and training programmes have gathered more than 1500 alumni from 163 countries. Diplo also hosts the Geneva Internet Platform (GIP).

Diplo also provides customised courses and training both online and in situ.

Geneva Internet Platform

Acronym: GIP

Address: WMO Building, 7bis, Avenue de la Paix, CH-1202 Geneva, Switzerland

Website: https://giplatform.org

Stakeholder group: NGOs and associations

The Geneva Internet Plaform (GIP) is a Swiss initiative operated by DiploFoundation that strives to engage digital actors, foster digital governance, and monitor digital policies.

It aims to provide a neutral and inclusive space for digital policy debates, strengthen the participation of small and developing countries in Geneva-based digital policy processes, support activities of Geneva-based Internet governance (IG) and ICT institutions and initiatives, facilitate research for an evidence-based, multidisciplinary digital policy, bridge various policy silos, and provide tools and methods for in situ and online engagement that could be used by other policy spaces in International Geneva and worldwide. The GIP’s activities are implemented based on three pillars: a physical platform in Geneva, an online platform and observatory, and a dialogue lab.